Roger D. Kamm, PhD

Email: 

Office: 

NE47-321

Phone: 

(617) 253-5330
Cecil and Ida Green Distinguished Professor of Biological and Mechanical Engineering

Research-at-a-glance: 

Biological Machines/Microfluidics
Angiogenesis/Vasculogenesis
Cancer
Simulation and modeling
Molecular Mechanics

Biography: 

Professor Kamm began his career at Northwestern University earning a degree in Mechaniacal Engineering. He subsequently earned both a Master’s and a PhD in Mechanical Enginering at MIT. Since 1978, he has been a professor of Mechanical Engineering at MIT. Professor Kamm was one of the founding members of the Biological Engineering department when it was created in 1998.

Research: 

An overriding objective of the Mechanobiology Lab is to elucidate the fundamental nature of how cells sense and respond to mechanical stimuli, and to employ the principles revealed by these studies to seek new treatments for vascular disease and to develop tissue constructs for drug and toxicity screening.

Both experimental and computational approaches are employed in a manner that encourages the constant interplay between the two for purposes of model validation, direct measurement of critical parameters, and identifying new hypotheses to be tested through experiment.

The Kamm research group works on four broad areas: Biological Machines/Microfluidics, Angiogenesis/Vasculogenesis, Cancer, and Simulation and modeling.

Over the past 5 years, the Mechanobiology group has developed various microfluidic platforms for mimicking the three dimensional microenvironment and investigating the role of mechanical stimuli, such as interstitial flow, cyclic strain, and ECM stiffness gradients, on cellular processes including cell migration, angiogenesis, and differentiation.  Recently, they have drawn upon their understanding of mechanobiology to direct the function of multicellular systems. For example, the angiogenesis model was extedned to build functional vascular networks in vitro, and stem cells were differentiated into cardiomyocytes through application of strain. As the complexity of synthetic modules is increased towards building biological machines, mechanics will play a more significant role, particularly in the engineering of neurons and myocytes for sensing and actuation. The Mechanobiology group will employ mechanical engineering as a tool to address this complexity while simultaneously extending our understanding of mechanotransduction. 

Formation of new blood vessel from an existing branch, by a regulated process known as angiogenesis, governs vascular patterning in the body and determines the distribution of nutrients and oxygen supply. Angiogenesis has essential roles in development, reproduction and repair but also occurs in tumor formation and in a variety of diseases. The Kamm lab studies the angiogenic process by computational modeling across multiple scale and by in vitro microfluidic experiments that mimics in vivo biophysical and biochemical microenvironment. They have shown that angiogenic endothelial cells seeded in contact with collagen gel can be induced to form nascent angiogenic sprouts in microfluidic which later develop into a vascular network. 

Tumor invasion has received a lot of attention as a critical step in metastatic disease for developing new cancer drugs. Current understanding of the role of biophysical and cellular microenvironment in tumor invasion is limited, because of the lack of appropriate in vitro and in vivo models. The Mechanobiology Lab hasadapted their previous microfluidic platforms for studying the role of the endothelium on tumor intravasation and the effects of interstitial flow on tumor cell migration, along with the development of new hard plastic devices for commercial transition. 

Computational models aide with data interpretation and experimental design, and simulations can prove insight into biological mechanisms in instances where experiments are not feasible. Modeling and simulation are integral parts to the Mechanobiology Lab, and they have developed models spanning length scales from single molecules to cell populations. Furthermore, these models are not independent; the lab employs course-graining techniques to allow models developed at small length scales to inform larger scale models. For example, the bulk properties of a material have been estimated by course-graining simulations of the constitutive atoms, providing a quantitative link between the chemical composition and mechanics of biomaterials. 

Research Areas: 

Honors & Awards: 

Eschbach Distinguished Visiting Scholar Award, Northwestern University, 2002
Fellow, American Society of Mechanical Engineering, 2003
Fellow, Biomedical Engineering Society, 2004
Fellow, International Academy of Medical and Biological Engineering, 2005
Lissner Medal (for lifetime achievement), ASME Bioengineering Division, 2010
Fellow, American Academy for the Advancement of Science, 2010
Elected to the Institute of Medicine, 2010

Selected Publications:

Jeon, Jessie S., Simone Bersini, Jordan A. Whisler, Michelle B. Chen, Gabriele Dubini, Joseph L. Charest, Matteo Moretti, and Roger D. Kamm. "Generation of 3D functional microvascular networks with human mesenchymal stem cells in microfluidic systems." Integr Biol (Camb) 6, no. 5 (2014): 555-63.
Polacheck, William J., Alexandra E. German, Akiko Mammoto, Donald E. Ingber, and Roger D. Kamm. "Mechanotransduction of fluid stresses governs 3D cell migration." Proc Natl Acad Sci U S A 111, no. 7 (2014): 2447-52.
Bersini, Simone, Jessie S. Jeon, Gabriele Dubini, Chiara Arrigoni, Seok Chung, Joseph L. Charest, Matteo Moretti, and Roger D. Kamm. "A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone." Biomaterials 35, no. 8 (2014): 2454-61.
Chen, Michelle B., Jordan A. Whisler, Jessie S. Jeon, and Roger D. Kamm. "Mechanisms of tumor cell extravasation in an in vitro microvascular network platform." Integr Biol (Camb) 5, no. 10 (2013): 1262-71.
Zervantonakis, Ioannis K., Shannon K. Hughes-Alford, Joseph L. Charest, John S. Condeelis, Frank B. Gertler, and Roger D. Kamm. "Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function." Proc Natl Acad Sci U S A 109, no. 34 (2012): 13515-20.