Angela Belcher, PhD



(617) 324-2800
James Mason Crafts Professor


Organic-inorganic interface engineering
Synthetic biology


Member, Koch Institute for Integrative Cancer Research at MIT


Professor Angela Belcher is the James Mason Crafts Professor of Biological Engineering, Materials Science and the Koch Institute for Integrative Cancer Research at MIT. She is a biological and materials engineer with expertise in the fields of biomaterials, biomolecular materials, organic-inorganic interfaces and solid-state chemistry and devices. Her primary research focus is evolving new materials for energy, electronics, the environment, and medicine. She received her B.S. in Creative Studies from The University of California, Santa Barbara. She earned a Ph.D. in inorganic chemistry at UCSB in 1997. Following her postdoctoral research in electrical engineering at UCSB, she joined the faculty at The University of Texas at Austin in the Department of Chemistry. She joined the faculty at MIT in 2002. Some recent awards include 2022 NAS (National Academy of Science), 2018 NAE (National Academy of Engineers) Fellow, 2015 NAI (National Academy of Inventors) Fellow, the 2013 $500,000 Lemelson-MIT Prize for her Inventions, 2012 AAAS (American Academy of Arts and Sciences) Fellow, a MacArthur Fellow, 2010 Eni Prize for Renewable and Non-conventional Energy, in 2009 Rolling Stone Magazine listed her as one of the top 100 people changing the country. She has founded five companies. She also holds 36 patents with many pending. In July 2019, she took over as the head of the Biological Engineering Department at MIT. In 2022 she joined the National Security Commission on Emerging Biotechnology.


The Belcher lab seeks to understand and harness nature’s own processes in order to design technologically important materials and devices for energy, the environment, and medicine.

Ancient organisms have evolved to make exquisite nanostructures like shells and glassy diatoms.  Using directed evolution, the lab engineers organisms to grow and assemble novel hybrid organic-inorganic electronic, magnetic, and catalytic materials.  In doing so, the group capitalizes on many of the wonderful properties of biology – using only non-toxic materials, employing self-repair mechanisms, self-assembling precisely and over longer ranges, adapting & evolving to become better over time.  These materials have been used in applications as varied as solar cells, batteries, medical diagnostics and basic single molecule interactions related to disease.

Research Areas: 

Selected Publications:

Lee, Yun Jung, Hyunjung Yi, Woo-Jae Kim, Kisuk Kang, Dong Soo Yun, Michael S. Strano, Gerbrand Ceder, and Angela M. Belcher. "Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes." Science 324, no. 5930 (2009): 1051-5.
Oh, Dahyun, Jifa Qi, Yi-Chun Lu, Yong Zhang, Yang Shao-Horn, and Angela M. Belcher. "Biologically enhanced cathode design for improved capacity and cycle life for lithium-oxygen batteries." Nat Commun 4 (2013): 2756.
Dang, Xiangnan, Jifa Qi, Matthew T. Klug, Po-Yen Chen, Dong Soo Yun, Nicholas X. Fang, Paula T. Hammond, and Angela M. Belcher. "Tunable localized surface plasmon-enabled broadband light-harvesting enhancement for high-efficiency panchromatic dye-sensitized solar cells." Nano Lett 13, no. 2 (2013): 637-42.